
       
Sam Houston State University 

Department of Economics and International Business 
Working Paper Series  

_____________________________________________________ 
 
 
 

Dead on Arrival: Zero Tolerance Laws Don’t Work 
 

Darren Grant 
 
 

SHSU Economics & Intl. Business Working Paper No. SHSU_ECO_WP07-08 
October 2007 

 
 
 
 
 

Abstract:  
By 1998 all states had passed laws lowering the legal blood alcohol content for drivers 
under 21 to effectively zero.  Theory shows these laws have ambiguous effects on overall 
fatalities and economic efficiency, and the data show they have little effect on driver 
behavior.  A panel analysis of the 1988-2000 FARS indicates that zero tolerance laws 
have no material influence on the level of fatalities, while quantile regression reveals 
virtually no change in the distribution of BAC among drivers involved in fatal accidents. 

 
 
 
 
 
 
 
 
 
 
 
 
 

SHSU ECONOMICS WORKING PAPER 



Dead on Arrival: Zero Tolerance Laws Don’t Work*

Darren Grant

Abstract

By 1998 all states had passed laws lowering the legal blood alcohol content for drivers under 21 to

effectively zero.  Theory shows these laws have ambiguous effects on overall fatalities and economic

efficiency, and the data show they have little effect on driver behavior.  A panel analysis of the 1988-

2000 FARS indicates that zero tolerance laws have no material influence on the level of fatalities,

while quantile regression reveals virtually no change in the distribution of BAC among drivers

involved in fatal accidents.



Why do college students drink so stupidly?  Because drinking intelligently is against
the law. 
      –Jack Hitt, New York Times Magazine, October 1999

I.  INTRODUCTION

For two decades U.S. drunk driving legislation has become increasingly strict as the states,

responding to financial incentives provided by Congress, have reduced allowable blood alcohol

content (BAC) levels.  In 2005 the last state lowered its illegal per se BAC limit for adults to 0.08

percent, down from 0.10.  During the 1990s even lower limits of 0.01 or 0.02 were instituted for

drivers under 21 (here, termed “youth”), as shown in Figure 1.  This legislation, which adopts a “zero

tolerance” policy toward underage drinking and driving, is the subject of this paper.  Previous work

on zero tolerance laws has thoroughly examined their effects on a variety of drinking-related

behaviors, but as yet their effects on traffic fatalities–the most fundamental question of all–have not

received a full treatment.  Existing U.S. fatality analyses have been limited either in scope,

comprising a small part of a larger empirical study, or sophistication, utilizing relatively crude

statistical methods.

A full treatment is needed for two reasons.  The first is to thoroughly ground the analysis in

economic theory, which has not been done before.  On the surface, a zero tolerance law would seem

to be a simple, powerful, sure way to reduce drunk driving fatalities.  But economists, used to

thinking on the margin, should suspect otherwise.  This legislation generates strong marginal

disincentives against taking the first drink, but much smaller marginal disincentives thereafter

(depending on the effect of BAC on the probability of arrest, etc.).  These marginal incentives are

not uniformly stronger than those imposed by higher BAC limits.  As a result, zero tolerance laws

can have unintended, or perverse, effects of uncertain magnitude that counteract the purpose of the
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law.  Ultimately, zero tolerance legislation has ambiguous effects on fatalities and economic

efficiency.  We demonstrate this in a simple model and derive new predictions that are testable and

unambiguous.

Our second objective is to provide comprehensive evidence of zero tolerance laws’ effects

on traffic fatalities, applying a variety of panel techniques to data from the Fatality Analysis

Reporting System (FARS) of the National Highway Traffic Safety Administration (NHTSA).  The

limited scope of earlier studies leaves their results, generally supportive of these laws’ efficacy,

potentially sensitive to specification or subject to omitted variables bias, problems that have occurred

elsewhere in the traffic safety literature.  In our analysis we pay particular attention to these issues,

which turn out to be fundamental, using a variety of direct and indirect methods to control for

unobservable factors and ascertain the robustness of our results.  This is complemented by a

distributional analysis, new to this literature, that quantifies the intended and unintended

consequences of zero tolerance legislation and tests the only robust hypotheses generated by theory.

 These analyses indicate that the intended and unintended consequences of zero tolerance

legislation are minimal.  Zero tolerance laws have no material effect on fatalities, because they have

no material effect on driver behavior.

II.  THE THEORY OF SINGLE BAC THRESHOLDS

Setup  

A simple model can illustrate the individual and population effects of a reduction in

permissible BAC levels, of which zero tolerance laws are the most extreme example.  Let C denote

nthe amount of alcohol consumed and V (C) denote the “value” of that consumption to the consumer:
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the amount individual n is willing to pay for permission to purchase C units of alcohol at the market

price and consume them.  Any harmful internal effects of alcohol consumption are captured in V;

the expected harm to others resulting from drunk driving is denoted by D.  We assume V increases

at a decreasing rate up to its maximum, as is standard, while studies by Zador, Krawchuk, and Voas

(2000) and Blomberg et al. (2005) indicate dD/dC > 0, d²D/dC² > 0.  We also assume the function

V (but not C, of course) is invariant to changes in policy, in effect assuming that individual drinking

preferences are not sensitive to the general state of inebriation on the roads.  (The FARS data,

described below, indicate collisions between two drinking drivers are quite rare, so this assumption

n nis justified.)  Absent legal penalties, consumer n purchases S  = argmaxV  units of alcohol.

The government sets penalties for drunk driving such that the monetary value of the expected

legal penalty for driving after consuming C units of alcohol is H(C).  While the penalty structure can

1 1be arbitrary, we first consider a single drunk driving threshold T : H(C) = 0, C # T ; H(C) = L, C >

1T .  This defines the legal, rather than the illegal, threshold, for ease of exposition.  Figure 2

illustrates all penalty structures considered in this paper.  This structure does not take into account

the effects of BAC on the chances of arrest or conviction, violations occurring below the per se limit,

or errors in assessing BAC by consumers or law enforcement, greatly simplifying the presentation

without altering our central conclusions.  We ignore driver switching for the same reasons.

Effects of a Threshold Reduction

When there is a single BAC threshold, the penalty structure is a step function.  The consumer

nwill then choose one of two critical points: the point of maximum satisfaction S  or the legal

1 n 1 n n n n n 1threshold T .  The latter is chosen if V (T ) > V (S ) - L, or, equivalently, if V (S ) - V (T ) < L.  This
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second expression takes a cost-benefit form: the cost of satisfying the law, on the left, is the

monetized utility loss incurred by limiting alcohol consumption, while the benefit of doing so is

1 2avoiding the expected penalty L, on the right.  If the threshold falls from T  to T , the benefit of

adhering to the law is unchanged, but the cost of doing so, in reduced consumption, has increased.

Some consumers will incur this additional cost and further reduce their drinking, but others will not,

nand will revert to S .  Reductions in BAC thresholds cause some drivers to drink less and other

drivers to drink more.

The effect of BAC limits on a given driver’s behavior depends, then, on his tastes for alcohol,

specifically 1) his desired level of consumption and 2) his willingness to reduce that consumption

1 n 1to satisfy the law.  For any given threshold T , some drivers, for whom S  < T , will trivially satisfy

n 1 n n n 1the law; others, for whom S  > T  but V (S ) - V (T ) < L, will limit consumption to adhere to the

n n n 1law; while still others, for whom V (S ) - V (T ) > L, will ignore the law.  The effect of BAC limits

in a population of drivers depends on the distribution of these tastes for alcohol.  To illustrate we

nquantify these across this population using S and a second parameter, P, such that V (C) =

n n nmin(P *C,P *S ).   Then S represents the first “taste term” listed above and P, the monetized utility1

loss from sacrificing one unit of alcohol consumption, the second.  Each driver occupies a point in

(S,P) space, and his response to a single BAC threshold is characterized as shown in Figure 3.

Region X contains drivers who trivially satisfy the threshold (without changing their alcohol

consumption), region Y those who reduce their drinking to satisfy the threshold, and region Z who

ignore the threshold.

1 2When the BAC threshold is reduced from T  to T , the behavioral responses again depend

on these two parameters, and can be classified by the sets A1-A3, B1-B2, and D in Figure 4.  First
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consider drivers who trivially satisfied the original BAC threshold.  Some of these also trivially

n n n 2satisfy the new, lower one (A1), while others, for whom V (S ) - V (T ) < L, reduce their

2consumption to T  (A2), and the remainder leave it unchanged (B1).  As a result, there will be more

2 2 1drivers with C # T  and fewer with T  < C # T .  Next, consider drivers who had lowered

consumption in order to satisfy the original threshold.  Some of these will further reduce their

n 1 n n n 2consumption to meet the new threshold (A3), while others, for whom V (T ) > V (S ) - L > V (T ),

n 1will cease to accommodate the law and will consume S  > T  (B2).  There will again be more drivers

2 2 1 1with C # T  and fewer with T  < C # T ; there will also be more with C $ T .  Finally, consumers

who violated the original threshold will continue to violate the new one (D).  

The aggregate effect of a threshold reduction on fatalities, the sum of these intended and

perverse effects, is theoretically ambiguous.   But theory does make three clear predictions about the2

2change in the distribution of drivers’ BAC: the fraction of drivers with C # T  should increase, that

2 1 1 with T  < C # T  should decrease, and that with C > T should increase.

In fact, were the data available, the fraction of drivers in each of the six sets listed above

could be discerned from the CDFs of driver BAC before and after the threshold reduction, as

illustrated in the solid and dashed lines at the bottom of Figure 4.  Drivers who reduce their drinking

1 2to satisfy the original threshold generate a kink in the original CDF at T .  The kink moves to T  after

1the threshold reduction; the two CDFs intersect at T .  The fraction of drivers in each set could be

1 2calculated from this point of intersection and the values of the CDFs at T  and T , and the intended

and perverse effects of the law quantified.

We do not observe the BAC of all drivers, however, just those involved in fatal accidents,

and the chances of being in an accident rise rapidly with BAC.  As long as total fatalities fall or do
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not rise much after a threshold reduction, however, the two CDFs will cross at a single point and will

exhibit kinks near the appropriate thresholds.  The intended and perverse effects of the threshold

reduction are still discernable, and the three predictions listed above still hold.  If, instead, a large

2increase in total fatalities swamps the growth in fatalities involving drivers with C # T , then the

fraction of fatalities attributable to those drivers could fall.  But the other two predictions remain

valid.

The assumed penalty structure is overly simplistic in that the probability of being arrested

for drunk driving, and hence the expected penalty H(C), is increasing in C.  The qualitative

predictions of the model, however, are unchanged.  If the probability of arrest for drunk driving was

proportional to one’s BAC level (H(C) = kC, C > T, with kT = L), for example, the graphs in Figures

3 and 4 retain their shape, but are shifted vertically by the constant of proportionality: the analysis

of population effects of a threshold reduction would be identical.  In fact, ambiguous effects on

fatalities are predicted for any change to any penalty structure that increases penalties below some

2 1 1 2 2BAC level but not does increase them above that level [H (C) > H (C), K  # C # K  < T; H (C) =

1H (C), C $ T], because the marginal penalty for consuming an additional unit of alcohol is increased

at some BAC levels and decreased at others.  Some drivers respond to the former, and drink less, but

others respond to the latter, and drink more.  One cannot eliminate perverse incentives simply by

finessing the penalty structure.

Policy Optimality  

A reduction in BAC thresholds, with L held constant, cannot be justified on the simple basis

that it is “tougher,” and would unambiguously lead to a reduction in drunk driving.  Can such a
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change be theoretically justified on the basis of economic efficiency instead?

Efficiency would be achieved by a penalty structure resembling a Pigovian tax, forcing

drivers to internalize the external costs of drunk driving.  Each driver would then choose the

consumption level for which marginal private benefits equaled marginal social costs.  Line G1 in

Figure 3 illustrates the marginal penalty, dH/dC, for the efficient penalty structure, H(C) = D(C).

This penalty structure encourages all consumers to the right of G1 to reduce their drinking to satisfy

the law, but leaves consumers to the left of G1 unaffected.  All drinking is eliminated for which

dD/dC > dV/dC = P.  The single threshold, in contrast, reduces drinking among a vastly different,

“almost orthogonal” set of consumers–those in region Y.  (This near-orthogonality obtains because

this penalty structure is not convex, as D is.)  This cannot be efficient: consumption levels are too

mlow for those consumers in region Y above P  and too high for all other consumers located

underneath G1.  

A single threshold need not even improve aggregate economic efficiency.  The reduction in

mdrinking for consumers in region Y below P  increases efficiency, but the reduction in drinking for

mmost of those consumers in region Y above P  reduces it.  The net effect is ambiguous.  Furthermore,

lower thresholds need not be more efficient than higher thresholds.  As the threshold falls, so does

mP ; the region in which efficiency increases gets smaller, while the region in which it decreases gets

larger.  The net effect, which depends on the number of consumers in each region, is ambiguous.

These findings result from the shape of the penalty structure, not the magnitude of the penalty

itself.  Line G2 represents the marginal penalties for a weaker, second-best penalty structure that

does not reduce fatalities to the optimal level but does maximize consumer surplus for the fatality

level that is attained.  The previous analysis carries through unchanged.
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Kenkel (1993) points out that, while penalties for drunk driving are inefficiently low, the

greater probability of arrest at high BAC levels makes the penalty structure more efficient by making

the expected penalty (the product of the probability of arrest and the penalty if convicted) increasing

for all C > T, more closely resembling a Pigovian tax.  While true, however, this does not lead to full

efficiency over the 0.02-0.10 BAC range influenced by zero tolerance laws, as Grant’s (2007) careful

examination of recent data shows that, as BAC rises, the increase in crash probabilities exceeds the

increase in arrest probabilities.  As a result, the conclusions of the previous analysis continue to

hold.3

A theoretical case for the efficacy or efficiency of zero tolerance legislation cannot be made.

Any appraisal must stand on its effects on traffic safety, which we assess next.

III.  DATA

Our empirical analyses relate the aggregate number of fatalities in each state in each year, or

the distribution of BAC in those fatalities, to an indicator for the presence of a zero tolerance law

and controls.  The dependent variables are taken from the 1988-2000 FARS, which records each U.S.

fatality that occurs on a public highway.  This time period spans the range of years over which all

but one of the zero tolerance laws satisfying the Congressional mandate were adopted (see below

and Figure 1), yet, with the smallest of exceptions (a few months in South Dakota and Wyoming),

post-dated the 1980s increase in the minimum legal drinking age to 21.  For each fatality the state,

time of day, and age of the driver in each vehicle involved in the accident is recorded.  As discussed

in Subramanian and Utter (1998), driver BAC is measured directly in about half of the observations

and is imputed using NHTSA’s imputation technique for the others, mostly nondrinkers; only about
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5% of the observations involve drinking drivers with unmeasured BAC.  Because most alcohol-

related traffic fatalities involving youth drivers occur at night (Dee and Evans, 2001), our analysis

will ultimately focus on fatalities in nighttime accidents involving youth drivers, of which there are

roughly 30,000 in the data.  The distributional analysis uses this microdata directly, while the

aggregate fatality analysis, or “levels analysis,” agglomerates fatalities in each state for each year.

For this there are a total of 663 observations (13 years * 51 states, including the District of

Columbia).

Figure 5 presents the CDF of driver BAC for all fatalities of youth drivers in single vehicle,

nighttime accidents in the two years prior to the year a zero tolerance law was adopted in each state

(top left) and the two years following the year a zero tolerance law was adopted in each state (top

right).  Surprisingly, no kinks are visible near the adult or youth thresholds in either CDF.

The two CDFs overlap so closely they cannot be easily distinguished; instead, their difference

at each BAC level is presented in the bottom left graph of the figure.  This corresponds to the

difference between the dashed and solid CDFs in Figure 4, and is first positive, then negative, as

expected.  The bottom right graph in Figure 5 adopts the inverse perspective, presenting the

difference in BAC at each percentile, the format used for the quantile regression results presented

below.  Again the results conform to theory, with BAC falling at low percentiles and increasing at

high percentiles.  But in both graphs these differences are small.

Our key independent variable is a dummy for the presence of a zero tolerance law in that state

in that year.  Initially this variable recognizes only those laws that pass Congressional muster by

proscribing BAC levels of 0.02 or higher for all drivers under 21.  As Figure 1 illustrates, however,

some states passed earlier legislation that covered only some youth drivers or set more modest BAC
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limits.  Later we will investigate the effect of these laws separately.  The other independent variables

are a full set of state and year fixed effects, population, the number of highway miles driven, the

unemployment rate (all standard) and dummies for the presence of 0.08 adult BAC laws, seat belt

laws, and administrative license revocation laws (ALR)–arguably the most important relevant

legislation widely implemented over the period zero tolerance laws were adopted.4

State fixed effects account for all relevant state-specific, time-invariant factors, such as

geography, while year effects capture time-varying factors common to all states, along with the

average effect of all unmeasured factors that vary over time, such as vehicle weight.  Both are

standard in the modern traffic safety literature.  The remaining controls vary within states over time.

These are far from exhaustive.  This is partly by necessity: one cannot hope to measure all statewide

legal, weather, highway quality, and attitudinal factors that affect traffic safety over time.  It is also

partly by design.  The traffic safety literature reveals the difficulties of controlling for all relevant

factors directly.  Aside from population, unemployment, and vehicle miles, all included here, other

studies’ controls are typically insignificant.  Thus, our empirical approach is to begin with a simple

specification, and then employ numerous direct and indirect methods to gauge robustness and the

extent of omitted variables bias, including a control group methodology that involves estimating the

model for groups to which the law does not apply.  This reveals bias of the size and magnitude

needed to generate false evidence of zero tolerance laws’ effectiveness.  With this specification, too,

we can replicate the findings of previous studies and explain why they differ from ours.

IV.  EMPIRICAL METHODS

Our strategy for estimating the effects of zero tolerance laws on fatalities–the levels
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(1)

analysis–relies on non-synchronous changes in these laws at the state level.  This motivates a panel

count data model, in particular the following negative binomial count data regression specification:

where F represents the number of fatalities in state s during year t, X contains control variables

including state and year fixed effects, ZT is a dummy that equals one for states with a zero tolerance

law in that year, and ß and ( are coefficients.  The negative binomial model is an extension of the

s,tPoisson count data model that allows for overdispersion (the variance exceeds the mean): 8  is the

s,texpected value of F , while 2 is the overdispersion parameter (which is uniformly significant here).

The coefficient ( captures the change in fatalities due to the zero tolerance law, in percentage terms.

We estimate this model on fatalities in the “target group,” the population of interest, and, to

check for omitted variables bias, fatalities in “control groups” exempt from the law but subject to

the same underlying factors that influence fatalities in the target group, such as weather, road quality,

or safety attitudes.  When no bias-causing controls are omitted from X, ($  should be insignificant in

the control group and (multiplied by 100) will be an unbiased estimate of the percentage change in

fatalities attributable to the law in the target group.  In contrast, if ($  < 0 is comparable in the target

and control groups, both estimates may be caused by omitted factors, and our conclusions are

weakened accordingly.  This estimation strategy, adopted in recent studies of traffic safety legislation

such as Dee and Evans (2001) and Grant and Rutner (2004), has additional power here because of

the existence of several reasonable control groups, described below.

We also examine the effects of zero tolerance laws on the distribution of fatalities by driver
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(2)

BAC.  One can do this using least squares regressions of the fraction of statewide, annual fatalities

2 1 1falling in different ranges of driver BAC–[T , T ), and [T , 4), in the terminology of the theory–on

the zero tolerance dummy and controls.  If the law works, fewer fatalities should involve the “mild

1drinkers” whose BAC falls between the original threshold T  (0.08 or 0.10 generally) pertaining to

2adult drivers and the new youth threshold T  (0.01 or 0.02) instituted by zero tolerance laws.

Alternatively, one can use quantile regression for the same purpose.  This essentially

estimates the inverse of the difference between the two CDFs in Figure 4 (though only for drivers

involved in fatal accidents).  As in Koenker (2005), this regression is specified as follows:

where i indexes individual fatalities (not state-year aggregates), BAC is the driver’s blood alcohol

concentration, ZT and X are the zero tolerance law dummy and the controls, as before, and TARGET

is a dummy that equals one if the observation is from the target group and zero if it is from a control

group.  This approach allows one to incorporate the control group directly into the analysis, which

is the easiest way to utilize a control group methodology with quantile regression.  In this model,

2which is estimated on fatalities in both the target and control groups combined, * ZT “absorbs”

omitted variable bias from all unmeasured influences on driver BAC that affect both groups jointly

and coincide with the implementation of a zero tolerance law in that state.  The causal effects of the

3zero tolerance law on the target group appear in the interaction term * .

3Quantiles, indexed by J, can take any value on the unit interval, so the curve * (J), J 0 (0,1)

describes the effect of zero tolerance laws on the distribution of driver BAC in fatal accidents.  A
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0 3 0zero tolerance law changes driver BAC at percentile 100*J  by * (J ).  One can infer the magnitudes

of the intended and perverse effects of zero tolerance laws from these estimates.

V.  RESULTS

Replication  

We begin by replicating the results of previous fatality analyses.   The first such studies, by5

Voas et al. (1998), Blomberg (1992), and Hingson et al. (1989, 1994), used a simple “pre-post”

methodology that compares the change in youth fatalities in states adopting zero tolerance laws to

that in a control group, such as youth in states without such laws.  These studies find these laws

reduce nighttime youth traffic fatalities by about 20%.  This estimate is implausibly large.  Zero

tolerance laws operate by reducing the number of youth drivers whose BAC falls between the

contemporaneous adult illegal threshold of 0.08 or 0.10 and the new youth threshold of 0.01 or 0.02.

Figure 5 shows that these mild drinkers represent at most 15% of youth driver fatalities, and that

their ranks are hardly thinned in the years after the law is instituted.  These early studies’ findings

probably reflect omitted variables bias, as no confounding factors are explicitly controlled for.

This deficiency was remedied by a second wave of studies, by Dee (2001), Dee and Evans

(2001), Eisenberg (2003), and Voas et al. (2003), that used multiple regression to examine fatalities

in all states over a period of several years.  All but the last of these utilize state and year fixed effects,

along with several statewide time-varying controls.  In our data, these fixed effects are highly

significant and their inclusion substantially diminishes the zero tolerance coefficient.  The

conclusions of the three studies utilizing fixed effects, while somewhat variable, are mildly

favorable, finding fatality reductions on the order of 5% for youth and no effect for adults.  The
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negative coefficient estimate for youth suggests the laws work; the zero estimate for adults, to whom

the law does not apply, suggests the specification is sound.

In our analysis of similar data, with similar controls, we find the same thing.  Panel A of

Table 1 presents the results: the coefficient estimate on the zero tolerance dummy in a regression that

includes the controls listed above, which have been suppressed for brevity.  Each cell of the table

represents a separate regression.  Four dependent variables are considered: all fatalities in all

accidents involving youth drivers; all fatalities in vehicles driven by youth drivers; those fatalities

in single-vehicle accidents alone; and driver fatalities in single-vehicle accidents.  As it turns out,

the results are similar in all cases –a 5% reduction in fatalities for youth, but not adults.  (They would

also be similar if the dependent variable was per mile fatalities, as the coefficient on the logarithm

of miles rarely differs significantly from one.)  Results like these have been the basis for the

conclusion, to date, that zero tolerance laws work.

Level Effects with Control Groups, Broken Down by Time of Day  

Panel A, like previous studies, analyzes fatalities at all times of day.  But Dee and Evans

(2001) show that fewer than 15% of daytime traffic fatalities among teens involve alcohol, while

more than half of nighttime fatalities do.  A more discerning approach, then, following Dee and

Evans, is to focus on youth nighttime fatalities as the target group, and treat youth daytime fatalities

as a quasi-control group with which to check the soundness of the estimates.  (Chaloupka, Grossman,

and Saffer, 2002, note this approach requires daytime drinkers to be no more sensitive to the law

than their nighttime counterparts.)  We now adopt this approach and separate nighttime (9:00 pm-

4:59 am) fatalities from those occurring during the day (8:00 am - 5:59 pm).  A sizeable negative
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coefficient should be found only for youth, not adults, and then only at night.

Estimates for this target group, at the top of Panel B, suggest zero tolerance laws reduce

nighttime fatalities involving youth drivers by four to seven percent.  While statistical significance

is mild, ranging from 5-15%, the consistency of the results is reaffirming.  But similar estimates also

occur during the day, in the top row of Panel C, when they are not anticipated.  Similar estimates are

also found in age-related control groups, drivers too old to be covered by the law: “young adults”

(drivers aged 21-25) and “adults” (drivers aged 21-90).  Nighttime fatality estimates for the former

are found in the second row of Panel B, and those for the latter in the third row.  These imply fatality

reductions of four to seven percent, as with the target group, youth nighttime fatalities, in row one.

The fact that zero tolerance laws are estimated to cut fatalities by similar amounts in the

target and control groups implies that these estimates are attributable not to the law itself, but to

other coincident factors.  These may relate to drinking generally, generating the negative nighttime

coefficients for adults, or to youth driving, generating the negative daytime coefficients for youth.

Unfortunately, attempts to further discern these factors proved indeterminate.   The only time zero6

tolerance laws aren’t negatively associated with fatalities is for adults during the day (Panel C).  This

divergence in estimates, between youth daytime fatalities and adult daytime fatalities, is ultimately

the sole foundation of the favorable conclusions of earlier panel studies of zero tolerance laws.

We conducted several robustness checks with this basic model.  The first broadened our

controls by incorporating three additional dummies, for 70+ mph speed limits, graduated licensing

laws, and mandatory imprisonment requirements for first time violators, the only additional controls

that were significant and affected youth and adult fatalities disproportionately in either of the two

panel data studies most strongly supporting zero tolerance laws, Dee (2001) and Eisenberg (2003).
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The zero tolerance coefficients for all groups were virtually identical to those in Table 1.  Several

specification changes also had no effect on coefficient estimates: the inclusion of state time trends,

altering the young adult control group to include only drivers aged 26-30, or replacing the negative

binomial with the simpler, more restrictive Poisson model.  Nor would estimates materially change

by accounting for residual autocorrelation, which was small (< 0.10).

Finally, extended specifications were used to break down the laws’ effects more finely.  The

first looks for internal consistency.  Our initial specification only recognizes laws that pass

Congressional muster by restricting the illegal BAC to 0.01 or 0.02 for all drivers under 21, here

called “full laws.”  But Figure 1 shows some states had earlier passed “partial laws” that pertained

only to some youth drivers, allowed higher BAC levels, or both.  (For example, in 1991 Georgia

adopted an illegal BAC of 0.06 for youth under 18.)  The specification in the upper half of Table 2

includes coefficients for full laws, partial laws, and an “interaction” of the two, which estimates the

effect of a full law in states that already had partial laws.  If zero tolerance laws operate as their

advocates intend, the full law coefficient should dominate the partial law coefficient, while the

interaction term should be positive, because the introduction of a full law will have less impact in

states where a partial law is already in effect.  Instead, the reverse is true: coefficients on the partial

law dominate those on the full law, while the interaction term is negative.  Again similar coefficients

are observed in the control group (for two of the three variables).  The simplest explanation for these

awkward results is the existence of omitted variables that impart a sizeable bias to key coefficients.

Then, in the lower half of Table 2, we estimate the effect of zero tolerance laws separately

for states that do and do not have administrative license revocation.  Eisenberg (2003) finds a

significant effect of zero tolerance laws only in states with ALR, while Dee and Evans (2001) do not
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find any difference between states with and without ALR.  Here the estimated effect in the control

group is similar to that in the target group, whether or not the state has ALR.

Ultimately, none of these regressions obtain a zero tolerance coefficient that is significant in

the expected direction among youth without a matching coefficient in a control group.  Even those

coefficients that are not significant–and most are not–are matched by those in the control groups.

There is little evidence that zero tolerance laws reduce fatal accidents involving youth drivers.

Distributional Effects  

The effect of zero tolerance laws on aggregate fatalities is theoretically ambiguous and

empirically small.  But theory does make strong predictions about the influence of these laws on the

distribution of BAC among drivers involved in fatal accidents.  The distributional analysis tests these

predictions and quantifies the intended and perverse effects of the law.  It is possible, after all, that

small aggregate effects are obtained because the intended and perverse consequences of zero

tolerance laws are offsetting.  These estimations also serve as a final robustness check on our

previous findings, because the distributional analysis implicitly controls for all factors that affect

fatalities independent of driver BAC, even if they vary across states over time.

We first use quantile regression to estimate the effect of zero tolerance laws on the

distribution of BAC of youth drivers killed in single-vehicle nighttime accidents in our data.  The

3results are presented in Figure 6, which graphs * (J) for J 0 (0.4,1), all quantiles with a positive

BAC in the aggregate.  Negative values imply a given quantile is reached at a lower BAC, positive

values at a higher BAC, and theory predicts negative coefficient estimates until the crossing point

in Figure 4 and then positive values afterwards.  The estimates are consistent with this prediction,
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but are never significant.  They are also extremely small in magnitude, indicating that zero tolerance

laws hardly change the distribution of driver BAC, as observed in the simple comparison in Figure

5.

The other way to examine distributional effects is to estimate the influence of zero tolerance

laws on the fraction of fatalities falling in two categories, defined by the (approximate) adult and

youth thresholds during the time zero tolerance laws were imposed: those with 0.02 # BAC # 0.09,

whose share should decrease, and those with BAC $ 0.10, whose share should increase.  The results

are presented in Table 3.  Each cell of the table presents the zero tolerance coefficient, its standard

error, and the mean of the dependent variable (so relative effects can be inferred).  Again each cell

represents a different regression, with controls suppressed for brevity.  The coefficients for youth,

in the first and fourth rows, take the expected signs, but are small and never significant, and are

matched by the corresponding coefficients in the control groups more often than not.  These results

reinforce those from the quantile regression.

 To look for problems arising from imputed BAC, this analysis was replicated using the

unimputed data, in which the distribution of fatalities with measured driver BAC and the number

of fatalities with unmeasured BAC were compared across the target and control groups.  We also

estimated several alternative quantile regressions to check for robustness: omitting the control group,

utilizing all fatalities in single vehicle accidents, and limiting the sample to states with high BAC

reporting. These analyses all confirm the findings presented here.  There is no evidence that zero

tolerance laws materially change the distribution of BAC of drivers involved in fatal accidents.

These laws have little effect on fatalities because they have little effect on driver behavior.
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VI.  CONCLUSION

The only evidence that consistently supports zero tolerance laws’ effectiveness ultimately

comes from two sources: pre-post studies that do not utilize controls and yield implausibly large

effects, and significant negative panel regression coefficients for youth daytime fatalities that are not

matched among adults, who are exempt from the law.  This evidence is far outweighed by that to the

contrary: similar coefficient estimates for daytime and nighttime fatalities among youth, though far

more of the latter are alcohol-related; significant negative coefficients on adult fatalities at night,

matching those for youth; confounding findings concerning full and partial laws; and, especially, the

absence of any effect in the distributional analysis.

Perhaps it is not surprising that zero tolerance laws are ineffective.  After all, the strongest

zero tolerance law ever passed–Prohibition–had a relatively small effect on alcohol consumption in

the long term, according to Dills, Jacobson, and Miron (2005).  Still, one wonders whether these

laws’ weak effects are a function of their design.  Zero tolerance laws encourage mild drinkers to

reduce their drinking, without providing further incentives for heavy drinkers to reduce their

drinking.  Indeed, some individuals should increase alcohol consumption following adoption of a

zero tolerance law.  Mild drinkers are less dangerous drivers than heavy drinkers are, and they

generate a small fraction of traffic fatalities.  Zero tolerance laws thus attempt to further reduce

drinking among “lower priority” mild drinkers, while slightly weakening drinking disincentives for

heavier drinkers, who are far more dangerous and cause far more traffic fatalities.  This is of

questionable merit.

This contention is buttressed by other recent evidence.  A comprehensive study by Freeman

(2007) finds the other major reduction in alcohol thresholds, to 0.08 for adults, has also been
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ineffective, and Grant’s (2007) new structural analysis of the drunk driving penalty structure supports

both Freeman’s conclusion and that in this paper.  The only way to strengthen drunk driving

penalties unambiguously, guarantee a decrease in drunk driving, and improve economic efficiency

is to ensure that the marginal legal penalty for consuming a unit of alcohol does not decrease at any

BAC level under the new law.  This, in turn, cannot happen unless the penalty at or beyond the

2 1 1original BAC threshold is raised (H (C) > H (C) for C > K* $ T ), as some states have recently done

by adopting aggravated drunk driving laws that administer additional penalties for drivers with BACs

of 0.15 or more.  Collectively, these studies suggest the existing penalty structure can be improved

upon, and economic analysis can serve helpfully in doing so.  For one such effort, see Grant (2007).
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FIGURE 1
The Incidence of Zero Tolerance Laws in the United States

Note: The “any law” line includes any state with a law that specifies a reduced BAC threshold for

some or all drivers under the age of 21 in that year.  The “zero tolerance law age < 21" line includes
only those laws with a per se illegal BAC no greater than 0.02 for all drivers under the age of 21.
These laws are sometimes called “full laws” in the text.  The difference between the two lines
reflects “partial laws” that pertained only to some youth drivers, allowed higher BAC levels, or both.
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FIGURE 2
 Illustrations of Alternative Penalty Structures

1 21.  A single threshold T (H(C) = 0, C # T; H(C) = L, C > T), and threshold reduction from T  to T .

2.  The probability of arrest is proportional to BAC, with original threshold at T (H(C) = 0, C # T;

1H(C) = kC, C > T, with kT = L) and threshold reduction from T  to 0.

3.  Arbitrary change in the penalty structure that  4.  A simple change in the law such that the
increases penalties below some BAC level but      marginal legal penalty for each unit of 

2 1 1 2not above that level (H (C) > H (C), K #C# K < T;       alcohol consumption never decreases.

2 1H (C) = H (C), C $ T).
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FIGURE 3
Population Effects of Single BAC Threshold
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FIGURE 4
Population Effects of Threshold Reduction

CDF of Driver BAC
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FIGURE 5
Two Distributions of BAC for Youth Driver Fatalities in Single Car, Nighttime Accidents, and the

Difference between These Distributions
Top Left: CDF of driver BAC in the two calendar years before the year a zero tolerance law was
implemented in each state.  Top Right: CDF of driver BAC in the two calendar years after the year

a zero tolerance law was implemented in each state.  Bottom Left: The difference between the two
CDFs at each BAC level.  Bottom Right: The difference in BAC at each percentile, interpolated when
necessary from the data. 
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FIGURE 6
Quantile Regression Results (Driver Fatalities in Single Vehicle, Nighttime Accidents)
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TABLE 1
Aggregate Fatality Analysis (coefficient estimates, with standard errors in parentheses)

TIME OF DAY
  Drivers’ Age Range

All Fatalities in All
Accidents Involving

Specified Drivers

All Fatalities in
Vehicles Driven by
Specified Drivers

All Fatalities in
Single Vehicle

Accidents

 Fatalities of
Drivers in Single

Vehicle Accidents

Panel A: DAY AND NIGHT FATALITIES
  Drivers Aged 15-20  (Youth)

  -0.047*
  (0.018)

  -0.044*
  (0.020)

  -0.047*
  (0.024)

   -0.040**
   (0.027)

  Drivers Aged 21-90  (Adults)    0.008
  (0.012)

   0.004
  (0.012)

   0.008
  (0.015)

    0.006
   (0.016)

Panel B: NIGHTTIME FATALITIES
  Drivers Aged 15-20

  -0.050**
  (0.028)

  -0.047
  (0.030)

  -0.065*
  (0.033)

   -0.070**
   (0.037)

  Drivers Aged 21-25  (Young Adults)   -0.047**
  (0.028)

  -0.034
  (0.030)

  -0.059**
  (0.036)

   -0.071**
   (0.039)

  Drivers Aged 21-90   -0.034*
  (0.017)

  -0.039*
  (0.018)

  -0.053*
  (0.021)

   -0.056*
   (0.022)

Panel C: DAYTIME FATALITIES
  Drivers Aged 15-20 

  -0.053*
  (0.024)

  -0.052**
  (0.029)

  -0.061
  (0.040)

   -0.007
   (0.050)

  Drivers Aged 21-25    0.021
  (0.033)

   0.024
  (0.033)

  -0.040
  (0.049)

   -0.021
   (0.058)

  Drivers Aged 21-90    0.022
  (0.014)

   0.022
  (0.015)

   0.037**
  (0.020)

    0.031
   (0.022)

Note: Each cell presents the coefficient on the zero tolerance dummy variable in a negative binomial regression also containing a full set
of state and year dummy variables, the log of vehicle miles traveled, the log of population, unemployment, dummies for primary and
secondary seat belt laws, a dummy for an administrative license revocation law, and a dummy for a 0.08 adult BAC limit, all measured by
state by year.  Sample size: 663 (51 states * 13 years).  Significance is indicated at the 5% (*) and 10% (**) levels.  Panel C includes
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fatalities at all times of day, not just the time periods defined as day (8:00 am-5:59 pm) and night (9:00-4:59 am) in the text.
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TABLE 2  
Extended Nighttime Fatality Analysis (coefficient estimates, standard errors in parentheses)

SPECIFICATION
  Drivers’ Age Range
    Law Variable/Coefficient

All Night Fatalities
in Vehicles Driven

by Specified Drivers

 Fatalities of Drivers
in Single Vehicle
Night Accidents

FULL AND PARTIAL LAWS
  Drivers Aged 15-20
    “Full Law” Coefficient

  -0.042
  (0.032)

   -0.040
   (0.043)

    “Partial Law” Coefficient   -0.053
  (0.052)

   -0.058
   (0.053)

     Interaction Term   -0.033
  (0.038)

   -0.115*
   (0.043)

  Drivers Aged 21-90
    “Full Law” Coefficient

  -0.028
  (0.019)

   -0.043**
   (0.023)

    “Partial Law” Coefficient    0.002
  (0.032)

   -0.013
   (0.038)

     Interaction Term   -0.044*
  (0.023)

   -0.052**
   (0.027)

ALR INTERACTION
  Drivers Aged 15-20
     ALR Coefficient

  -0.080*
  (0.034)

   -0.015
   (0.038)   

     Zero Tolerance Coefficient   -0.062  
  (0.040)

   -0.021
   (0.049)

     Interaction Term    0.021
  (0.037)

   -0.070
   (0.045)

  Drivers Aged 21-90
     ALR Coefficient

  -0.045*
  (0.020)

   -0.060*
   (0.024)

     Zero Tolerance Coefficient   -0.059*
  (0.024)

   -0.074*
   (0.029)

     Interaction Term    0.028
  (0.022)

    0.025
   (0.027)

Note: Each cell presents selected coefficients from a negative binomial regression also containing a
full set of state and year dummies, the log of vehicle miles traveled, the log of population,
unemployment, dummies for primary and secondary seat belt laws and a 0.08 adult BAC limit.
Sample size: 663 (51 states * 13 years).  Significance indicated at the 5% (*) and 10% (**) levels.
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TABLE 3
Fatality Distribution Analysis (coefficient estimates, with standard errors in parentheses and the

mean of the dependent variable in brackets).

         DEPENDENT VARIABLE

ACCIDENT TYPE
    Drivers’ Age Range

Fraction of Fatalities
in which  0.02 #

Driver’s BAC # 0.09

 Fraction of Fatalities
in which Driver’s

BAC $ 0.10

ALL NIGHTTIME
FATALITIES IN
VEHICLES DRIVEN BY:
    Drivers Aged 15-20

   -0.009
   (0.011)
   [0.146]

    0.001
   (0.014)
   [0.375]

    Drivers Aged 21-25    -0.002
   (0.011)
   [0.141]

   -0.023
   (0.014)
   [0.603]

    Drivers Aged 21-90     0.000
   (0.004)
   [0.104]

   -0.012**
   (0.007)
   [0.582]     

DRIVER FATALITIES IN
NIGHTTIME SINGLE-
VEHICLE ACCIDENTS
    Drivers Aged 15-20

   -0.009
   (0.014)
   [0.137]

    0.006
   (0.022)
   [0.485]

    Drivers Aged 21-25    -0.025*
   (0.013)
   [0.122]

    0.022
   (0.018)
   [0.714]

    Drivers Aged 21-90    -0.006
   (0.005)
   [0.088]

    0.002
   (0.009)
   [0.716]

Note: Each cell presents the coefficient on the zero tolerance dummy variable in a weighted least
squares regression (population as weights) also containing a full set of state and year dummy
variables, the log of vehicle miles traveled, the log of population, unemployment, dummies for
primary and secondary seat belt laws, a dummy for an administrative license revocation law, and a
dummy for a 0.08 adult BAC limit.  Sample size: 663 (51 states * 13 years).  Significance is indicated
at the 5% (*) and 10% (**) levels.
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1. One need not parameterize V to do this, because the behavioral response to a threshold reduction

1 2depends on just two things: the reduction in V needed to satisfy T , and that needed to satisfy T .

The population response to a threshold reduction is given by the joint distribution of these two

quantities, which can be illustrated nonparametrically, without making any additional assumptions

about V.  While this is the most general and most facile way to illustrate the population effects of

threshold reductions and other simple penalty structures, the parametric approach used in the text

yields the same conclusions and is preferable for discussing efficiency.

2. As is the relation of threshold reductions to the penalty magnitude L.  An increase in L moves both

hyperbolas to the right in Figure 4, increasing areas A2, A3, and B2, thus magnifying both the

intended and perverse effects of the policy.  Therefore, threshold reductions need not be more

effective when expected penalties for drunk driving are larger.

3. Treat G3 as the marginal penalty structure dH/dC under a zero tolerance law.  It lies below G1

because the probability of arrest grows more slowly with C than the probability of an accident.  All
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drivers in Figure 3 to the right of G3 reduce their consumption so that they “lie on” G3; that is, driver

n nn chooses the BAC for which dH/dC equals P  (unless P  is low enough, and then C = 0).  Compared

to a threshold at T, this penalty structure efficiently lowers alcohol consumption for some drivers,

for example, those in region X lying below G3.  But it inefficiently raises consumption for others,

Mfor example, those in region Y between P  and G3.  Again the net effect is ambiguous.

4. The data come from the Bureau of Labor Statistics, Highway Statistics, Traffic Safety Facts, the

Digest of Alcohol Highway-Safety Related Legislation, and Wagenaar, O’Malley, and LaFond

(2001).  Seat belt laws can be primary or secondary; only the former allows a vehicle to be stopped

solely for a seat belt violation.  ALR allows the state to suspend or revoke an individual’s license

immediately upon testing positive for drunk driving or refusing to be tested.  Population and miles

are logged because the “link function” in the generalized linear regression specification below

models fatalities in logs.

5. Several other studies examine these laws’ effect on drinking or other related outcomes: drinking

after driving, suicide, and venereal disease.  For the most part, these studies are evenly divided

between those finding no effect and those finding a significant negative effect.  And some of these

negative effects are not, in fact, predicted by theory, because they concern heavy drinking or

outcomes associated with heavy drinking, which this paper has shown should rise, not fall, with a

zero tolerance law.  Both these claims apply, in particular, for the two studies examining drinking

and drunk driving, Wagenaar, O’Malley, and LaFond (2001) and Carpenter (2004).

6. Every few years MADD grades several dimensions of state drunk driving control efforts, including

political leadership, laws and other sanctions, law enforcement, public awareness, and youth-directed

efforts.  Improvements in these grades tended to be positively associated with the adoption of zero

tolerance laws, but the associations were imprecise, insignificant, and weaker when 0.08 BAC laws
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and ALR were controlled for.  One cannot draw firm conclusions from these results.
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