TEACHING ENERGY CONSERVATION

Jim Bandy, Adj. Inst. Tarrant County College

About Me

- Purdue Univ. MS Electrical Power Eng. & TA
- TCC Adjunct Inst. of Engineering & Eng. Tech
- Power & Interdisciplinary EE Experience
 - Utility
 - Renewable
 - Military: Space, Aviation, Land & Naval
- Ancestors Depression Era Farmers
- Hobby & Part Time Truck Farming

TECHNOLOGY EDUCATION APPROACH

- Teach Scientific Principles of Energy & Power
 - Active Problem Solving vs. Passive Lists & Definitns.
 - Relate to Other Science Studies
 - Minimal Outside Jargon
- Relate Scientific Principles to Non-Science
 - Policies, Laws and Regulations
 - Acronyms
 - Politics
 - Government Agencies
 - Non-Gvernment

GOALS

- Review Basic Definitions
- What Are We Conserving?
- Energy Budget vs. Energy Costs
- The Grid and Agriculture
- Student Exercises

FORMS OF ENERGY

- Thermal
- Electrical
- Electromagnetic e.g. Light, Radio-Waves
- Chemical
- Mechanical
- Nuclear

LAW OF CONSERVATION OF ENERGY

- Energy is Neither Created of Destroyed
- Definition from Newtonian Physics
- Practical for Energy Conservation
- Corollary Conservation of Mass

WORK = ENERGY

• Mechanical Work = Mechanical Force x Distance

• Electrical Work =

Electromagnetic Force x Distance

ENERGY VS. POWER

Energy

- The Ability to Do Work
- Energy = Power x Time
- Example
 - Full Battery Charge
 - The Height of Water Falls

Power

- The Rate Work is Done
- Power = Energy/Time
- Example
 - Rate of Battery Charge
 - Flow Over Falls

ENTROPY – ENERGY "QUALITY"

- The Universe is Becoming More Disorganized
- Flow From High to Low Temp.
 - Heat Engine
 - Temperature Converted From Energy Source
- Temperature Difference Corresponds to Quality
- Electricity is High Quality
- Solar Thermal (not concentrated) is Low Quality
- Heat Death
 - Everything at the Same Temperature

EFFICIENCY < 100%

- Definitions
- Return on Investment

ELECTRICAL VS. OTHER SOURCES

• Energy "Quality"

- Entropy
- Temperature Required
- Electricity
 - Not always a good intermediate step
 - Where is waste heat dumped?
 - What is the efficiency of the entire energy flow?
 - PV or Hot air for space heating
 - PV or Fluid for Domestic Hot Water

TIME OF USE

• Cost of Energy Varies With Time

- Motivation for Smart Meters
- Avoid Using Expensive Energy
- Power Available
 - Maximum Distribution
 - Maximum Power Generation

LOGICAL PROBLEM SOLVING

Troubleshooting

Scientific Method

- What is Broken
- Test
- Measure
- Analyze
- Fix
- Iterate

- Hypothesis
- Experiment
- Conclusion
- Iterate

STUDENT EXERCISES

- Cell Phone
- Parasitic Loads
- Analysis of Electric Bill
- Yearly and Daily Energy Use
- ERCOT Graphics

ENGAGE STUDENTS

• STEM

- Renewable Energy
- Robotics
- Ag Technology Projects
- Energy Learning Objectives \rightarrow Curricula
 - Definitions
 - Applications
 - Measurements
 - Problem Solving

TOOLS FOR EXPERIMENTS

- Thermometer
- Airflow
- Tachometer
- Digital Multi-Meter & Conservation Meters
- Kilowatt-Hour Meter
- Instruments from Renewable Energy Kits
- USB Interfaces for Data Logging
- Embedded & Wireless Sensors

DEVISING A LAB PRACTICAL

- Devise Basic Learning Experiment
- Hands on Measurement and Resolution
- Relate to Practical Example
- Gather Typical Data
- Propose Solutions for Example

TRADITIONAL VS. RENEWABLE

- Conservation of Traditional Energy Sources
- Conservation of Renewable Energy Sources
- Relate the Two
- Problem Solving vs. Checklists
- Energy Budget

APPENDIX

Student Exercises

PARASITIC LOADS

- "Wall Warts" Always Consume Power
- Simple Measure How Hot is It?
- Unplug or Switch Off When Needed
- Supply Power Only While Charging Battery
- Use Switched Plug Strip

ENERGY BUDGET

- Money Flows Opposite Direction of Energy
- Energy Flows One Way
- Money Circulates
- Add Energy Used With Line Items

MEASURE "PARASITIC" LOADS

- Make Sure Someone is Measuring
- Smart Meter
- Load Meter
- DMM
- Does it Feel Hot?

SMART METER EXERCISE

• Obtaining a <u>Texas Smart Meter</u> Account

PHASE CHANGE LOADS

- Dry Wet Things Outside of Air Conditioning
- Open Containers in Refrigerator Kitchen
- Dry Clothes on the Line
- Exhaust Fans in Kitchen & Bathrooms
- Be Aware of Relative Humidity

AC CIRCUITS

• Power Factor

- Energy Delivered at Low Power Factor Costs More
- PF = cos(phase angle between current & voltage)
- Three Phase Motors More Efficient
 - Constant Mechanical Torque
 - Less Copper and Magnetic Material Needed
- Renewable Energy Inverters
 - Choose 3 PH over 1 PH at lower
 - Weight

USING SMART METER DATA

- Use Typical or Actual Local Smart Meter Data
- Base Load
- Demand Charge

TEXAS ENERGY PRODUCTION

- Energy Reliability Council of Texas
 - Resource Adequacy Reserve < 14%
- Utility Deregulation
 - No New Generating Plants
 - Some Renewable Energy
- Emissions Regulation
 - Limited Use of Local Engine Generators
 - High & Uncertain Costs to Build Plants

SMART GRID

- Technology Accomplishment of 21st Century
- Vulnerable to Cyber Attacks
- Student Data Exercise
- Grid Vulnerable to Physical Attacks

APPENDIX 2

Back-up Information

BIBLIOGRAPY

• Unpublished Class Notes

TOO MUCH INFORMATION (TMI) Relate to Science in Separate Units

• LEED	o DOE
• MW	• NREL
• MVAR	• AWEA
	• ERCOT

"FREE ENERGY" AND OTHER SCAMS

Based on Circular or Poor Definitions
Misunderstandings of Advanced Definitions
Misquotes or Oversimplifications